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Abstract

Similarity search is an important function in many applications, which usually focuses on measuring

the similarity between objects with the same type. However,in many scenarios, we need to measure the

relatedness between objects with different types. With thesurge of study on heterogeneous networks,

the relevance measure on objects with different types becomes increasingly important. In this paper,

we study the relevance search problem in heterogeneous networks, where the task is to measure the

relatedness of heterogeneous objects (including objects with the same type or different types). A novel

measure HeteSim is proposed, which has the following attributes: (1) a uniform measure: it can measure

the relatedness of objects with the same or different types in a uniform framework; (2) a path-constrained

measure: the relatedness of object pairs are defined based onthe search path that connect two objects

through following a sequence of node types; (3) a semi-metric measure: HeteSim has some good

properties (e.g., self-maximum and symmetric), that are crucial to many data mining tasks. Moreover,

we analyze the computation characteristics of HeteSim and propose the corresponding quick computation

strategies. Empirical studies show that HeteSim can effectively and efficiently evaluate the relatedness

of heterogeneous objects.
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I. INTRODUCTION

Similarity search is an important task in a wide range of applications, such as web search

[1] and product recommendations [2]. The key of similarity search is similarity measure, which

evaluates the similarity of object pairs. Similarity measure has been extensively studied for

traditional categorical and numerical data types, such as Jaccard coefficient and cosine similarity.

There are also a few studies on leveraging link information in networks to measure the node

similarity, such as Personalized PageRank [3], SimRank [4], and PathSim [5]. Conventional study

on similarity measure focuses on objects with same type. That is, the objects being measured are

of the same type, such as “document-to-document”, “webpage-to-webpage” and “user-to-user”.

There is seldom research on similarity measure on objects with different types. That is, the objects

being measured are of different types, such as “author-to-conference” and “user-to-movie”. It is

reasonable. The similarity of objects with different typesis a little against our common sense.

Moreover, different from the similarity of objects with same type, which can be measured on

homogeneous situation (e.g., the same feature space or homogeneous link structure), it is even

hard to define the similarity of objects with different types.

However, the similarity of objects with different types is not only meaningful but also useful

in some scenarios. For example, the author J. F. Naughton is more relevant to SIGMOD than

KDD. A teenager may like the movie “Harry Potter” more than “The Shawshank Redemption”.

Moreover, the similarity measure of objects with differenttypes are needed in many applications.

For example, in a recommendation system, we need to know the relatedness between users and

movies to make accurate recommendations. In an automatic profile extraction application, we

need to measure the relatedness of objects with different types, such as authors and conferences,

conferences and organizations etc. Particularly, with theadvent of study on heterogeneous

information networks [5], [6], it is not only increasingly important but also feasible to study

the relatedness among objects with different types. Heterogeneous information networks are the

logical networks involving multiple-typed objects and multiple-typed links denoting different

relations [7]. For example, a bibliographic network includes authors, papers, conferences, terms

and their links representing their relations. It is clear that heterogeneous information networks

are ubiquitous and form a critical component of modern information infrastructure [7]. So it is

essential to provide a relevance search function on objectswith different types in such networks,

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 3

which is the base of many applications. Since objects with different types coexist in the same

network, their relevance measure is possible through link structure.

In this paper, we study the relevance search problem in heterogeneous information networks.

The aim of relevance search is to effectively measure the relatedness of heterogeneous objects

(including objects with the same type or different types). Different from the similarity search

which only measures the similarity of objects with same type, the relevance search measures

the relatedness of heterogeneous objects, not limit to objects with same type. Distinct from

relational retrieval [8], [9] in information retrieval domain, here relevance search is done on

heterogeneous networks which can be constructed from meta-data of objects. Moreover, we think

that a desirable relevance measure should satisfy the symmetry property based on the following

reasons. (1) The symmetric measure is more general and useful in many learning tasks. Although

the symmetry property is not necessary in the query task, it is essential for many important

tasks, such as clustering and collaborative filtering. Moreover, it is the necessary condition for a

metric. (2) The symmetric measure makes more sense in many applications, especially for the

relatedness of heterogeneous object pairs. For example, insome applications, we need to answer

the question like who has the similar importance to the conference SIGIR as J. F. Naughton to

the SIGMOD. Through comparing the relatedness of object pairs, we can deduce the information

of their relative importance. However, it only can be done bythe symmetric measure, not the

asymmetric measure. It can be explained by the example shownin Fig. 1. For the symmetric

measure, we can deduce that W. B. Croft1 has the same importance to SIGIR as J. F. Naughton2

to the SIGMOD, since their relatedness scores are close. Suppose we know J. F. Naughton is

an influential researcher in SIGMOD, we can conclude that W. B. Croft is also an influential

researcher in SIGIR. However, we cannot deduce the relativeimportance information from an

asymmetric measure as shown in Fig. 1(b). From the relatedness of author to conference and

conference to author, we will draw conflicting conclusions.

Despite its value and significance, the relevance search in heterogeneous networks has seldom

been studied so far. It faces the following research challenges. (1) Heterogeneous network is much

more complex than traditional homogeneous network. In heterogeneous networks, different-

1http://ciir.cs.umass.edu/personnel/croft.html

2http://pages.cs.wisc.edu/∼naughton/
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(a) Symmetric measure (b) Asymmetric measure

Fig. 1. Examples of relative importance representing by symmetric and asymmetric measures. The rectangle with partially

marked black denotes the relatedness of two objects.

typed objects and links are coexist in a network and they carry different semantic meanings.

As an bibliographic example shown in Fig. 2(b) (more detailsin Section V.A), it includes

author, paper, term, and conference type. The relation “author-paper” means author writing

paper, while the relation “paper-conference” means paper published in conference. If disregarding

the difference of types and semantics, it does not make senseto mix different-typed objects to

measure the similarity. We can find that search paths, connecting two objects through a sequence

of relations between object types, embody rich semantic information [5]. Based on different

search paths, the relatedness of two objects may be totally different. For example, the relatedness

of authors and conferences should be different based on the “author-paper-conference” path and

“author-paper-author-paper-conference” path, which mean the relations of authors publishing

papers in conferences and their co-authors publishing papers in conferences, respectively. As a

consequence, a desirable relevance measure should be path-dependent, since such a measure can

capture the semantics under paths and return meaningful values based on different paths. (2) It

is difficult to design a uniform and symmetric relevance measure for heterogeneous objects. In

heterogeneous networks, the paths connecting objects withsame type are usually symmetric and

the path length is a even number, so it may be not difficult to design a symmetric measure based

on the symmetric paths, as the PathSim [5] does. However, thepaths connecting objects with

different types are asymmetric and the path length may be an odd number. In this condition, it is

not easy to design a symmetric relevance measure. It is more challengeable to design a uniform

relevance measure for these two conditions.

Inspired by the intuition that two objects are related if they are referenced by related objects,

we propose a general framework, called HeteSim, to evaluatethe relatedness of heterogeneous

objects in heterogeneous networks. HeteSim is a path-basedrelevance measure, which can
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effectively capture the subtle semantics of search paths. Based on pair-wise random walk model,

HeteSim treats arbitrary search paths in a uniform way, which guarantees the symmetric property

of HeteSim. An additional benefit is that HeteSim can evaluate the relatedness of objects with

same or different types in the same way. Moreover, HeteSim isa semi-metric measure. In

other words, HeteSim satisfies the properties of non-negativity, identity of indiscernibles, and

symmetry. It implies that HeteSim can be used in many learning tasks (e.g., clustering and

collaborative filtering). We also consider the computationissue of HeteSim and propose four

fast computation strategies. The extensive experiments validate the effectiveness of HeteSim.

As a general relevance measure, HeteSim illustrates its benefits and generality in knowledge

discovery of heterogeneous networks through four case studies: automatically extracting object

profile, experts finding through relative importance of object pairs, relevance search based on

path semantics, and semantic-based movie recommendation.HeteSim also shows its potential in

the machine learning tasks (i.e., query and clustering) where HeteSim outperforms other well-

established similarity measures. In addition, numerous experiments test the significance of fast

computing strategies of HeteSim.

II. RELATED WORK

The most related work to relevance search is similarity search. Here we briefly summarize

these works. Similarity search has been well studied for a long time. These studies can be

roughly categorized into two types: feature based approaches and link based approaches. The

feature based approaches measure the similarity of objectsbased on their feature values, such

as cosine similarity, Jaccard coefficient and Euclidean distance. Thek nearest neighbor is also

widely used in similarity measure [10], [11], which aims at finding top-k nearest neighbors

according to similarities defined on numerical features. Based on feature similarity, the top-k

similarity pair search algorithm (i.e., top-k-join) considers similarity between tuples [12]. This

type of approaches does not consider link relation among objects, so they cannot be applied to

networked data.

The link based approaches measure the similarity of objectsbased on their link structures in a

graph. The asymmetrical similarity measure, PersonalizedPageRank [3], evaluates the probability

starting from a source object to a target object by randomly walking with restart. It is extended

to the scalable calculation for online queries [13], [14] and the top-k answers [15]. SimRank

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 6

[4] is a symmetric similarity measure, which evaluates the similarity of two objects by their

neighbor’s similarities. Because of its computational complexity, many follow-up studies are

done to accelerate such calculations [16], [17]. SCAN [18] measures similarity of two objects

by comparing their immediate neighbor sets. Recently, Jin et al. proposed RoleSim to measure the

role similarity of node pair by automorphic equivalence [19]. These approaches just consider the

objects with the same type, so they can not be applied in heterogeneous networks. ObjectRank

[20] applies authority-based ranking to keyword search in labeled graphs and PopRank [21]

proposes a domain-independent object-level link analysismodel. Although these two approaches

noticed that heterogeneous relationships could affect thesimilarity, they do not consider the

distinct semantics of paths that include different-typed objects, so they also cannot measure the

similarity of objects in heterogeneous networks.

Recently, the relevance research in heterogeneous data emerge. Wang et al. [22] proposed a

model to learn relevance from heterogeneous data, while their model more focuses on analyzing

the context of heterogeneous networks, rather than networkstructure. Based on a Markov-

chain model of random walk, Fouss et al. [23] designed a similarity metric ECTD with nice

properties and interpretation. Unfortunately, absent of path constraint, ECTD cannot capture the

subtle semantics in heterogeneous networks. Considering semantics in meta paths constituted

by different-typed objects, Sun et al. [5] proposed PathSimto measure the similarity of same-

typed objects based on symmetric paths. However, many valuable paths are asymmetric and

the relatedness of different-typed objects are also meaningful. PathSim is not suitable in these

conditions. In information retrieval community, Lao and Cohen [9], [24] proposed a Path Con-

strained Random Walk (PCRW) model to measure the entity proximity in a labeled directed

graph constructed by the rich metadata of scientific literature. Although the PCRW model can

be applied to measuring the relatedness of different-typedobjects, the asymmetric property of

PCRW restricts its applications. In our HeteSim definition,users can measure the relatedness

of heterogeneous objects based on an arbitrary search path.The good merits of HeteSim (e.g.,

symmetric and self-maximum) make it suitable for more applications.

III. PRELIMINARY

A heterogeneous information network is a special type of information network, which either

contains multiple types of objects or multiple types of links.

October 1, 2013 DRAFT
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(a) ACM data (b) DBLP data (c) Movie data

Fig. 2. Examples of heterogeneous information network schema.

DEFINITION 1: Information Network. Given a schemaS = (A,R) which consists of a set of entities types

A = {A} and a set of relationsR = {R}, an information network is defined as a directed graphG = (V,E) with an

object type mapping functionφ : V → A and a link type mapping functionψ : E → R. Each objectv ∈ V belongs

to one particular object typeφ(v) ∈ A, and each linke ∈ E belongs to a particular relationψ(e) ∈ R. When

the types of objects|A| > 1 or the types of relations|R| > 1, the network is calledheterogeneous information

network; otherwise, it is ahomogeneous information network.

In information networks, we distinguish object types and relation types. As a template for a

network, the network schema depicts the object types and therelations existing among object

types. For a relationR existing from typeA to typeB, denoted asA
R−→ B, A andB are the

source type andtarget type of relationR, which is denoted asR.S andR.T , respectively. The

inverse relationR−1 holds naturally forB
R−1

−→ A. Generally,R is not equal toR−1, unlessR is

symmetric and these two types are the same.

EXAMPLE 1: A bibliographic information network is a typical heterogeneous information network. The

network schema of ACM dataset (see Section V.A) is shown in Fig.2(a). It contains objects from seven types

of entities: papers (P), authors (A), affiliations (F), terms (T), subjects (S), venues (V), and conferences (C)

(a conference includes multiple venues, e.g., KDD including KDD2010, KDD2009 and so on). There are links

connecting different-typed objects. The link types are defined by the relations between two object types. For

example, links exist between authors and papers denoting the writing or written-by relations, between venues and

papers denoting the publishing or published-in relations.Fig.2(b) and (c) show the network schema of DBLP dataset

and IMDB movie data (see Section V.A), respectively.

Different from homogeneous networks, two objects in a heterogeneous network can be con-

nected via different paths and these paths have different meanings. For example, in Fig. 2(a),

authors and conferences can be connected via “Author-Paper-Venue-Conference” (APVC) path,

“Author-Paper-Subject-Paper-Venue-Conference” (APSPVC) path, and so on. The semantics un-

derneath these two paths are different. TheAPVCpath means that papers written by authors are
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published in conferences, while theAPSPVCpath means that papers having the same subjects

as the authors’ papers are published in conferences. Obviously, the distinct semantics under

different paths will lead to different results. The relatedness underAPVC path emphasizes the

conferences that authors participated, while the relatedness underAPSPVCpath emphasizes on

conferences publishing the papers that have the same subjects with authors’ papers. For example,

most of Christos Faloutsos’s papers are published in the KDD, VLDB, and SIGMOD. However,

the papers having the same subjects with his papers may be published in widespread conferences,

such as ICDM, SDM, and CIKM. So the relatedness of objects depends on the search path in

the heterogeneous networks. Formally, we define the meta search path as the relevance path.

DEFINITION 2: Relevance Path. A relevance pathP is a path defined on a schemaS = (A,R), and is

denoted in the form ofA1
R1−→ A2

R2−→ · · · Rl−→ Al+1 which defines a composite relationR = R1 ◦ R2 ◦ · · · ◦ Rl

between typeA1 andAl+1, where◦ denotes the composition operator on relations. The length of the pathP is the

number of relations inP , which is l.

For simplicity, we can also use type names denoting the relevance path if there are no multiple

relations between the same pair of types:P = (A1A2 · · ·Al+1). We say a concrete pathp =

(a1a2 · · · al+1) betweena1 and al+1 in networkG is a path instance of the relevance pathP,

if for eachai, φ(ai) = Ai and each linkei = 〈ai, ai+1〉 belongs to the relationRi in P. It can

be denoted asp ∈ P. A relevance pathP−1 is thereverse path of P, which defines an inverse

relation of the one defined byP. Similarly, we define thereverse path instance of p−1 as the

reverse path ofp in G. Further, a relevance pathP is asymmetric path, if the relationR defined

by it is symmetric (i.e.,P is equal toP−1), such asAPA andAPCPA. Two relevance paths

P1 = (A1A2 · · ·Al) andP2 = (B1B2 · · ·Bk) areconcatenable if and only if Al is equal toB1,

and the concatenated path is written asP = (P1P2), which equals to(A1A2 · · ·AlB2 · · ·Bk). A

simple concatenable example is thatAP andPV can be concatenated to the pathAPV .

IV. HETESIM : A UNIFORM AND SYMMETRIC RELEVANCE MEASURE

A. Basic Idea

In many domains, similar objects are more likely to be related to some other similar objects.

For example, similar researchers usually publish many similar papers; similar customers purchase

similar commodities. As a consequence, two objects are similar if they are referenced by similar

objects. This intuition is also fit for heterogeneous objects. For example, a researcher is more

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 9

relevant to the conferences that the researcher has published papers in; and a customer is more

faithful to the brands that the customer usually purchased.Although the similar idea has been

applied in SimRank [4], it is limited to homogeneous networks. When we apply the idea to

heterogeneous networks, it faces the following challenges. (1) The relatedness of heterogeneous

objects is path-constrained. The relevance path not only captures the semantics information

but also constrains the walk path. So we need to design a path-based similarity measure. (2)

A uniform and symmetric measure should be designed for arbitrary paths. For a given path

(symmetric or asymmetric), the measure can evaluate the relatedness of heterogeneous object

pair (same or different types) with one single score. In the following section, we will illustrate

these challenges and their solutions in detail.

B. Path-based Relevance Measure

Different from homogeneous networks, the paths in heterogeneous networks have semantics,

which makes the relatedness of object pair depend on the given relevance path. Following the

basic idea that similar objects are related to similar objects, we propose a path-based relevance

measure: HeteSim.

DEFINITION 3: HeteSim: Given a relevance pathP = R1 ◦ R2 ◦ · · · ◦ Rl, the HeteSim score between two

objectss and t (s ∈ R1.S and t ∈ Rl.T ) is:

HeteSim(s, t|R1◦R2◦· · ·◦Rl) =
1

|O(s|R1)||I(t|Rl)|

|O(s|R1)|
∑

i=1

|I(t|Rl)|
∑

j=1

HeteSim(Oi(s|R1), Ij(t|Rl)|R2◦· · ·◦Rl−1)

(1)

whereO(s|R1) is the out-neighbors ofs based on relationR1, andI(t|Rl) is the in-neighbors oft based on relation

Rl.

When s does not have any out-neighbors (i.e.,O(s|R1) = ∅) or t does not have any in-

neighbors (i.e.,I(t|Rl) = ∅) following the path, we have no way to infer any relatedness between

s andt in this case, so we define their relevance value to be 0. Particularly, we consider objects

with same type to haveself-relation (denoted asI relation) and each object only has self-relation

with itself. It is obvious that an object is just similar to itself for I relation. So its relevance

measure can be defined as follows:

DEFINITION 4: HeteSim based on self-relation: HeteSim between two same-typed objectss and t based

on the self-relationI is:

HeteSim(s, t|I) = δ(s, t) (2)

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 10

whereδ(s, t) = 1, if s and t are same, or elseδ(s, t) = 0.

Equation (1) shows that the computation ofHeteSim(s, t|P) needs to iterate over all pairs

(Oi(s|R1), Ij(t|Rl)) of (s, t) along the path (s along the path andt against path), and sum up

the relatedness of these pairs. Then, we normalize it by the total number of out-neighbors ofs

and in-neighbors oft. That is, the relatedness betweens andt is the average relatedness between

the out-neighbors ofs and the in-neighbors oft. The process continues untils and t will meet

along the path. Similar to SimRank [4], HeteSim is also basedon pair wise random walk, while

it considers the path constraint. As we know, SimRank measures how soon two random surfers

are expected to meet at the same node [4]. By contrast,HeteSim(s, t|P) measures how likely

s and t will meet at the same node whens follows along the path andt goes against the path.

C. Decomposition of Relevance Path

However, the source objects and the target objectt may not meet along a given pathP. For

the similarity measure of same-typed objects, the relevance paths are usually even-length, even

symmetric, so the source object and the target object will meet at the middle objects. However,

for the relevance measure of different-typed objects, the relevance paths are usually odd-length.

In this condition, the source and target objects will never meet at the same objects. Taking the

APV C path as an example, authors along the path and conferences against the path will never

meet in the same objects. So the original HeteSim is not suitable for odd-length relevance paths.

In order to solve this difficulty, a basic idea is to transformodd-length paths into even-length

paths, and thus the source and target objects are always ableto meet at the same objects. As a

consequence, an arbitrary path can be decomposed as two equal-length paths.

When the lengthl of a relevance pathP = (A1A2 · · ·Al+1) is even, the source objects

(along the path) and the target objects (against the path) will meet in themiddle type object

M = A l

2
+1 on themiddle position mid = l

2
+ 1, so the relevance pathP can be divided into

two equal-length pathPL andPR. That is,P = PLPR, wherePL = A1A2 · · ·Amid−1M and

PR = MAmid+1 · · ·Al+1.

When the path lengthl is odd, the source objects and the target objects will meet atthe

relation A l+1

2

A l+1

2
+1. For example, based on theAPSPVCpath, the source and target objects

will meet at theSP relation after two steps. In order to let the source and target objects meet at

same-typed objects, we can add a middle type objectE between the atomic relationA l+1

2

A l+1

2
+1

October 1, 2013 DRAFT
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and maintain the relation betweenA l+1

2

andA l+1

2
+1 at the same time. Then the new path becomes

P ′ = (A1 · · ·E · · ·Al+1) which length isl+1, an even number. In the aforementioned example,

the path becomesAPSEPVC, whose length is even now. The source objects and the target

objects will meet in themiddle type objectM = E on themiddle position mid = l+1
2

+1. As

a consequence, the new relevance pathP ′ can also be decomposed into two equal-length path

PL andPR.

DEFINITION 5: Decomposition of relevance path. An arbitrary relevance pathP = (A1A2 · · ·Al+1) can

be decomposed into two equal-path pathPL andPR (i.e., P = PLPR), wherePL = A1A2 · · ·Amid−1M and

PR =MAmid+1 · · ·Al+1. M andmid are defined as above.

Obviously, for a symmetric pathP = PLPR, P−1
R is equal toPL. For example, the relevance

pathP = APCPA can be decomposed asPL = APC andPR = CPA. For the relevance path

APSPVC, we can add a middle type objectE in SP and thus the path becomesAPSEPVC, so

PL = APSE andPR = EPV C.

The next question is how we can add the middle type objectE in an atomic relationR between

A l+1

2

andA l+1

2
+1 in an odd-length path. In order to contain original atomic relation, we need

to make theR relation be the composition of two new relations. To do so, for each instance of

relationR, we can add an instance ofE to connect the source and target objects of the relation

instance. An example is shown in Fig. 3(a), where the middle type objectE is added in between

the atomic relationAB along each path instance.

DEFINITION 6: Decomposition of atomic relation. For an atomic relationR, we can add an object type

E (called edge object) between theR.S andR.T . And thus the atomic relationR is decomposed asRO andRI

whereRO represents the relation betweenR.S andE andRI represents that betweenE andR.T . For each relation

instancer ∈ R, an instancee ∈ E connectsr.S andr.T . The pathsr.S → e ande→ r.T are the instances ofRO

andRI , respectively.

It is clear that the decomposition has the following property, whose proof can be found in the

Appendix A.

Property 1. An atomic relationR can be decomposed asRO andRI , R = RO ◦RI , and this

decomposition is unique.

Based on this decomposition, the relatedness of two objectswith an atomic relationR can be

calculated as follows:

DEFINITION 7: HeteSim based on atomic relation: HeteSim between two different-typed objectss and t

October 1, 2013 DRAFT
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(a) Add middle type object (b) Decomposition of atomic relation

(c) HeteSim scores before normalization (d) HeteSim scores after normalization

Fig. 3. Decomposition of atomic relation and its HeteSim calculation.

based on an atomic relationR (s ∈ R.S and t ∈ R.T ) is:

HeteSim(s, t|R) = HeteSim(s, t|RO ◦RI) =
1

|O(s|RO)||I(t|RI)|

|O(s|RO)|
∑

i=1

|I(t|RI)|
∑

j=1

δ(Oi(s|RO), Ij(t|RI)) (3)

It is easy to find thatHeteSim(s, t|I) is a special case ofHeteSim(s, t|R), since, for the

self-relationI, I = IO ◦ II and |O(s|IO)| = |I(t|II)| = 1. Definition 7 means that HeteSim

can measure the relatedness of two different-typed objectswith an atomic relationR directly

through calculating the average of their mutual influence.

EXAMPLE 2: Fig. 3(a) shows an example of decomposition of atomic relation. The relationAB is decomposed

into the relationsAE andEB. Moreover, the relationAB is the composition ofAE andEB as shown in Fig.

3(b). Two HeteSim examples are illustrated in Fig. 3(c). We can find that HeteSim justly reflects relatedness of

objects. Takinga2 for example, althougha2 equally connects withb2, b3, andb4, it is more close tob3, because

b3 only connects witha2. This information is correctly reflected in the HeteSim score of a2 based onAB path:

(0, 0.17, 0.33, 0.17).

We also find that the similarity of an object and itself is not 1in HeteSim. Taking the right

figure of Fig. 3(c) as example, the relatedness ofa2 and itself is 0.33. It is obviously unreasonable.

In the following section, we will normalize the HeteSim and make the relevance measure more

reasonable.

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 13

D. Normalization of HeteSim

Firstly, we introduce the calculation of HeteSim between any two objects given an arbitrary

relevance path.

DEFINITION 8: Transition probability matrix. For relationA
R−→ B, WAB is an adjacent matrix between

type A andB. UAB is a normalized matrix ofWAB along the row vector, which is the transition probability

matrix ofA−→B based on relationR. VAB is a normalized matrix ofWAB along the column vector, which is the

transition probability matrix ofB−→A based on relationR−1.

It is easy to prove that the transition probability matrix has the following property. The proof

can be found in the Appendix A.

Property 2. UAB = V ′
BA andVAB = U ′

BA, whereV ′
BA is the transpose ofVBA.

DEFINITION 9: Reachable probability matrix. Given a networkG = (V,E) following a network schema

S = (A,R), a reachable probability matrixPM for a pathP = (A1A2 · · ·Al+1) is defined asPMP =

UA1A2
UA2A3

· · ·UAlAl+1
(PM for simplicity). PM(i, j) represents the probability of objecti ∈ A1 reaching

objectj ∈ Al+1 under the pathP .

According to the definition and Property 2 of HeteSim, the relevance between objects inA1

andAl+1 based on the relevance pathP = A1A2 · · ·Al+1 is

HeteSim(A1, Al+1|P) = HeteSim(A1, Al+1|PLPR)

= UA1A2
· · ·UAmid−1MVMAmid+1

· · ·VAlAl+1

= UA1A2
· · ·UAmid−1MU

′
Amid+1M

· · ·U ′
Al+1Al

= UA1A2
· · ·UAmid−1M (UAl+1Al

· · ·UAmid+1M )′

= PMPL
PM ′

PR
−1

(4)

The above equation shows that the relevance ofA1 andAl+1 based on the pathP is the inner

product of two probability distributions thatA1 reaches the middle type objectM along the path

andAl+1 reachesM against the path. For two instancesa and b in A1 andAl+1, respectively,

their relevance based on pathP is

HeteSim(a, b|P) = PMPL
(a, :)PM ′

PR
−1(b, :) (5)

wherePMP(a, :) means thea-th row in PMP .

We have stated that HeteSim needs to be normalized. It is reasonable that the relatedness of

the same objects is 1, so the HeteSim can be normalized as follows:
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DEFINITION 10: Normalization of HeteSim. The normalized HeteSim between two objectsa andb based

on the relevance pathP is:

HeteSim(a, b|P) =
PMPL

(a, :)PM ′
PR

−1(b, :)
√

‖PMPL
(a, :)‖‖PM ′

PR
−1(b, :)‖

(6)

In fact, the normalized HeteSim is the cosine of the probability distributions of the source

object a and target objectb reaching the middle type objectM . It ranges from 0 to 1. Fig.

3(d) shows the normalized HeteSim scores. It is clear that the normalized HeteSim is more

reasonable. The normalization is an important step for HeteSim with the following advantages.

(1) The normalized HeteSim has nice properties. The following Property 4 shows that HeteSim

satisfies the identity of indiscernibles. (2) It has nice interpretation. The normalized HeteSim is

the cosine of two vectors representing reachable probability. As Fouss et al. pointed out [23], the

angle between the node vectors is a much more predictive measure than the distance between

the nodes. In the following section, the HeteSim means the normalized HeteSim.

E. Properties of HeteSim

HeteSim has good properties, which makes it useful in many applications. The proof of these

properties can be found in the Appendix A.

Property 3: Symmetric: HeteSim(a, b|P) = HeteSim(b, a|P−1).

Property 3 shows the symmetric property of HeteSim. Although PathSim [5] also has the

similar symmetric property, it holds only when the path is symmetric anda and b are with the

same type. The HeteSim has the more general symmetric property not only for symmetric paths

(note thatP is equal toP−1 for symmetric paths) but also for asymmetric paths.

Property 4. Self-maximum: HeteSim(a, b|P) ∈ [0, 1]. HeteSim(a, b|P) is equal to 1 if and

only if PMPL
(a, :) is equal toPMPR

−1(b, :).

Property 4 shows HeteSim is well constrained. For a symmetric pathP (i.e., PL = PR
−1),

PMPL
(a, :) is equal toPMPR

−1(a, :), and thusHeteSim(a, a|P) is equal to 1. If we define the

distance between two objects (i.e.,dis(s, t)) as dis(s, t) = 1 − HeteSim(s, t), the distance of

the same object is zero (i.e.,dis(s, s) = 0). As a consequence, HeteSim satisfies the identity of

indiscernibles. Note that it is a general identity of indiscernibles. For two objects with different

types, their HeteSim score is also 1 if they have the same probability distribution on the middle

type object. It is reasonable, since they have the similar structure based on the given path.
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Since HeteSim obeys the properties of non-negativity, identity of indiscernibles, and symmetry,

we can say that HeteSim is a semi-metric measure [25]. Because of a path-based measure,

HeteSim does not obey the triangle inequality. A semi-metric measure has many good merits

and can be widely used in many applications [25].

Property 5. Connection to SimRank. For a bipartite graphG = (V,E) based on the schema

S = ({A,B}, {R}), suppose the constantC in SimRank is 1,

SimRank(a1, a2) = lim
n ∞

∑n

k=1HeteSim(a1, a2|(RR−1)
k
),

SimRank(b1, b2) = lim
n ∞

∑n

k=1HeteSim(b1, b2|(R−1R)
k
).

wherea1, a2 ∈ A, b1, b2 ∈ B andA
R−→ B. Here HeteSim is the non-normalized version.

This property reveals the connection of SimRank and HeteSim. SimRank sums up the meeting

probability of two objects after all possible steps. HeteSim just calculates the meeting probability

along the given relevance path. If the relevance paths explore all possible meta paths among

the two objects, the sum of HeteSim based on these paths is theSimRank. So we can say that

HeteSim is a path-constrained version of SimRank. Through relevance paths, HeteSim can subtly

evaluate the similarity of heterogeneous objects with fine granularity. This property also implies

that HeteSim is more efficient than SimRank, since HeteSim only needs to calculate the meeting

probability along the given relevance path, not all possible meta paths.

F. Discussion

Let us analyze the time and space complexity of computing HeteSim. Suppose the average

size of one type of objects isn and there areT types objects, the space requirement of HeteSim

is just O(n2) to store the relatedness matrix. Letd be the average of|O(s|Ri)||I(t|Rj)| over

all object-pairs(s, t) based on relationRi andRj . For a givenl-length relevance path, the time

required isO(ldn2), since node pairs (i.e.,n2) calculate their relatedness along the relevance path.

For SimRank, the similarity of node pairs in all types (i.e.,(Tn)2) are iteratively calculated at

the same time, so its space complexity isO(T 2n2), and the time complexity isO(k(T 2d)(Tn)2)

(i.e.,O(kdn2T 4)), wherek is the number of iterations. So the complexity of computing HeteSim

is much smaller than SimRank.

Here, we discuss how to choose relevance path. There are several ways to do it. (1) Users

can select proper paths according to their domain knowledgeand experiences. (2) Supervised

learning can be used to automatically determine the importance of relevance paths. In information
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retrieval field, Lao and Cohen [24] proposed a learnable proximity measure where proximity is

defined by a weighted combination of simple “path experts”. Through labeled training data, a

learning algorithm can infer the weights of paths. The similar strategy can also be used for path

selection. (3) Recently, Sun et al. [26] combined meta path selection and user-guided information

for clustering in heterogeneous networks. The similar user-guided information can also been

applied in the selection of relevance paths in HeteSim.

There are numbers of similarity measures, most of which are based on three basic strategies

[5]: (1) Path count strategy measures the number of path instances connecting source and target

objects; (2) Random walk (RW) strategy measures the probability of the random walk from

source to target objects; and (3) Pairwise random walk (PRW)strategy measures the pairwise

random walk probability starting from source and target objects and reaching the same middle

objects. Due to symmetry and arbitrary path constraints, weemploy the PRW model in this

work. Although the RW model can also satisfy the symmetric property through the combination

of the reachable probability based on the pathsP and P−1, it is redundancy for symmetric

path, as well as short of nice interpretability. For the PRW model, it is inevitable to face the

problem that the source and target object will not meet when the length of relevance path is

odd. In order to solve it, some optional strategies can be applied, such as assigning the meeting

object type. This paper adopts the path deposition strategybased on the following advantages.

(1) It has a uniform framework to evaluate the relevance of same or different-typed objects for

arbitrary paths. (2) It provides a simple but effective method to evaluate the relevance of two

different-typed objects based on an atomic relation (see Def. 7).

Furtherly, we compare six well-established similarity measures in Table I. There are three

similarity measures for heterogeneous networks (i.e., HeteSim, PathSim, and PCWR) and three

measures for homogeneous networks (i.e., P-PageRank, SimRank, and RoleSim), respectively.

Although these similarity measures all evaluate the similarity of nodes by utilizing network

structure, they have different properties and features. Three measures for heterogeneous networks

all are path-based, since meta paths in heterogeneous networks embody semantics and simplify

network structure. Two RW model based measures (i.e., P-PageRank and PCRW) do not satisfy

the symmetric property. Because of satisfying the triangleinequation, RoleSim is a metric, while

HeteSim, PathSim, and SimRank are semi-metric.
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TABLE I

COMPARISON OF DIFFERENT SIMILARITY MEASURES.

Symmetry Triangle Path Model Features

Inequation based

HeteSim
√ × √

PRW evaluate relevance of heterogeneous objects based on arbitrary path

PathSim[5]
√ × √

Path Count evaluate similarity of same-typed objects based on symmetric path

PCWR[9] × × √
RW measure proximity to the query nodes based on given path

SimRank[4]
√ × × PRW measure similarity of node pairs based on the similarity of their neighbors

RoleSim[19]
√ √ × PRW measure real-valued role similarity based on automorphic equivalence

P-PageRank[3] × × × RW measure personalized views of importance based on linkage strcutre

V. EXPERIMENTS

In the experiments, we validate the effectiveness of the HeteSim on three datasets with four

case studies and two learning tasks.

A. Datasets

Three heterogeneous information networks are employed in our experiments.

ACM dataset: The ACM dataset was downloaded from ACM digital library3 in June 2010.

The ACM dataset comes from 14 representative computer science conferences: KDD, SIGMOD,

WWW, SIGIR, CIKM, SODA, STOC, SOSP, SPAA, SIGCOMM, MobiCOMM, ICML, COLT,

and VLDB. These conferences include 196 corresponding venue proceedings (e.g., KDD confer-

ence includes 12 proceedings, such as KDD’10, KDD’09, etc).The dataset has 12K papers, 17K

authors, and 1.8K author affiliations. After removing stop words in the paper titles and abstracts,

we get 1.5K terms that appear in more than1% of the papers. The network also includes 73

subjects of these papers in ACM category. The network schemaof ACM dataset is shown in

Fig. 2(a).

DBLP dataset [27]: The DBLP dataset is a sub-network collected from DBLP website4

involving major conferences in four research areas: database, data mining, information retrieval

and artificial intelligence, which naturally form four classes. The dataset contains 14K papers,

20 conferences, 14K authors and 8.9K terms, with a total number of 17K links. In the dataset,

3http://dl.acm.org/

4http://www.informatik.uni-trier.de/∼ley/db/
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4057 authors, all 20 conferences and 100 papers are labeled with one of the four research areas.

The network schema is shown in Fig. 2(b).

Movie dataset [28]: The IMDB movie data comes from the Internet Movie Database5, which

includes movies, actors, directors and types. A movie heterogeneous network is constructed from

the movie data and its schema is shown in Fig. 2(c). The movie data contains 1.5K movies, 5K

actors, 551 directors, and 112 types.

B. Case Study

In this section, we demonstrate the traits of HeteSim through case study in four tasks: automatic

object profiling, expert finding, relevance search, and semantic recommendation.

1) Task 1: Automatic Object Profiling:We first study the effectiveness of our approach on

different-typed relevance measurement in the automatic object profiling task. If we want to

know the profile of an object, we can measure the relevance of the object to objects that we

are interested in. For example, we want to know the academic profile of Christos Faloutsos6. It

can be solved through measuring the relatedness of ChristosFaloutsos with related objects, e.g.,

conferences, affiliations, other authors, etc. Table II shows the lists of top relevant objects with

various types on ACM dataset.APV C path shows the conferences he actively participates. Note

that KDD and SIGMOD are the two major conferences Christos Faloutsos participates, which

are mentioned in his homepage7. From the pathAPT, we can obtain his research interests: data

mining, pattern discovery, scalable graph mining and social network. UsingAPS path, we can

discover his research areas represented as ACM subjects: database management (H.2) and data

storage (E.2). Based onAPA path, HeteSim finds the most important co-authors, most of which

are his Ph.D students. Another interesting case can be seen in Appendix B.

2) Task 2: Expert Finding:In this case, we want to validate the effectiveness of HeteSim

to reflect the relative importance of object pairs through anexpert finding task. As we know,

the relative importance of object pairs can be revealed through comparing their relatedness.

Suppose we know the experts in one domain, the expert finding task here is to find experts in

5www.imdb.com/

6http://www.cs.cmu.edu/∼christos/

7http://www.cs.cmu.edu/∼christos/misc.html
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TABLE II

AUTOMATIC OBJECT PROFILING TASK ON AUTHOR“CHRISTOSFALOUTSOS” ON ACM DATASET.

Path APVC APT APS APA

Rank Conf. Score Terms Score Subjects Score Authors Score

1 KDD 0.1198 mining 0.0930 H.2 (database management) 0.1023 Christos Faloutsos 1

2 SIGMOD 0.0284 patterns 0.0926 E.2 (data storage representations) 0.0232 Hanghang Tong 0.4152

3 VLDB 0.0262 scalable 0.0869 G.3 (probability and statistics) 0.0175 Agma Juci M. Traina 0.3250

4 CIKM 0.0083 graphs 0.0816 H.3 (information storage and retrieval) 0.0136 Spiros Papadimitriou 0.2785

5 WWW 0.0060 social 0.0672 H.1 (models and principles) 0.0135 Caetano Traina, Jr. 0.2680

TABLE III

RELATEDNESS VALUES OF AUTHORS AND CONFERENCES MEASURED BYHETESIM AND PCRWON ACM DATASET.

HeteSim PCRW

APVC&CVPA APVC CVPA

Pair Score Pair Score Pair Score

C. Faloutsos, KDD 0.1198 C. Faloutsos, KDD 0.5517 KDD, C. Faloutsos 0.0087

W. B. Croft, SIGIR 0.1201 W. B. Croft, SIGIR 0.6481 SIGIR, W. B. Croft 0.0098

J. F. Naughton, SIGMOD 0.1185 J. F. Naughton, SIGMOD 0.7647 SIGMOD, J. F. Naughton 0.0062

A. Gupta, SODA 0.1225 A. Gupta, SODA 0.7647 SODA, A. Gupta 0.0090

Luo Si, SIGIR 0.0734 Luo Si, SIGIR 0.7059 SIGIR, Luo Si 0.0030

Yan Chen, SIGCOMM 0.0786 Yan Chen, SIGCOMM 1 SIGCOMM, Yan Chen 0.0013

other domains through their relative importances. Table III shows the relevance scores returned

by different approaches on six “conference-author” pairs on ACM dataset. The relatedness of

conferences and authors are defined based on theAPVC andCVPApaths which have the same

semantics: authors publishing papers in conferences. Due to the symmetric property, HeteSim

returns the same value for both paths, while PCRW returns different values for these two paths.

Suppose that we are familar with data mining area, and already know that C. Faloutsos is

an influential researcher in KDD. Comparing these HeteSim scores, we can find influential

researchers in other research areas even if we are not quite familiar with these areas. J. F.

Naughton, W. B. Croft and A. Gupta should be influential researchers in SIGMOD, SIGIR and

SODA, respectively, since they have very similar HeteSim score to C. Faloutsos. Moreover, we

can also deduce that Luo Si and Yan Chen may be active researchers in SIGIR and SIGCOMM,

respectively, since they have moderate HeteSim scores. In fact, C. Faloutsos, J. F. Naughton, W.

B. Croft and A. Gupta are top ranked authors in their researchcommunities. Luo Si and Yan

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 20

TABLE IV

TOP 10 RELATED AUTHORS TO“CHRISTOSFALOUTSOS” BASED ONAPV CV PA PATH ON ACM DATASET.

HeteSim PathSim PCRW SimRank

Rank Author Score Author Score Author Score Author Score

1 Christos Faloutsos 1 Christos Faloutsos 1 Charu C. Aggarwal 0.0063 Christos Faloutsos 1

2 Srinivasan Parthasarathy 0.9937 Philip Yu 0.9376 Jiawei Han 0.0061 Edoardo Airoldi 0.0789

3 Xifeng Yan 0.9877 Jiawei Han 0.9346 Christos Faloutsos 0.0058 Leejay Wu 0.0767

4 Jian Pei 0.9857 Jian Pei 0.8956 Philip Yu 0.0056 Kensuke Onuma 0.0758

5 Jiong Yang 0.9810 Charu C. Aggarwal 0.7102 Alia I. Abdelmoty 0.0053 Christopher R. Palmer 0.0699

6 Ruoming Jin 0.9758 Jieping Ye 0.6930 Chris B. Jones 0.0053 Anthony Brockwell 0.0668

7 Wei Fan 0.9743 Heikki Mannila 0.6928 Jian Pei 0.0034 Hanghang Tong 0.0658

8 Evimaria Terzi 0.9695 Eamonn Keogh 0.6704 Heikki Mannila 0.0032 Evan Hoke 0.0651

9 Charu C. Aggarwal 0.9668 Ravi Kumar 0.6378 Eamonn Keogh 0.0031 Jia-Yu Pan 0.0650

10 Mohammed J. Zaki 0.9645 Vipin Kumar 0.6362 Mohammed J. Zaki 0.0027 Roberto Santos Filho 0.0648

Chen are the young professors and they have done good work in their research areas. However,

if the relevance measure is not symmetric (e.g., PCRW), it isvery hard to tell which authors are

more influential when comparing these relevance scores. Forexample, the PCRW score of Yan

Chen and SIGCOMM is the largest one in theAPVC path. However, the value is the smallest

one when the opposite path (i.e.,CVPA path) is considered. A quantitative experiment in the

Appendix C illustrates that, compared to PCRW, HeteSim can reveal the relative importance of

author-conference pairs more accurately.

3) Task 3: Relevance Search based on Path Semantics:As we have stated, the path-based

relevance measure can capture the semantics of paths. In this relevance search task, we will ob-

serve the importance of paths and the effectiveness of semantics capture through the comparison

of three path-based measures (i.e., HeteSim, PCRW, and PathSim) and SimRank. This task is

to find the top 10 related authors to Christos Faloutsos basedon theAPV CV PA path which

means authors publishing papers in same conferences. Through ignoring the heterogeneity of

objects, we directly run SimRank on whole network and selecttop ten authors from the rank

results which mix different-typed objects together. The comparison results are shown in Table

IV. At first sight, we can find that three path-based measures all return researchers having the

similar reputation with Christos in slightly different orders. However, the results of SimRank are

totally against our common sense. We think the reason of bad performances is that SimRank

only considers link structure but ignores the link semantics. In heterogeneous networks, different-
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KDD
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WWW

SIGIR
CIKM
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SOSP 
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SIGCOMM

MobiCOMM
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COLT
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C. Faloutsos

P. Yu

J. Han

C.C. Aggarwal

S. Parthasarathy

X.F. Yan

Fig. 4. Probability distribution of authors’ papers on 14 conferences of ACM dataset.

typed objects are connected together. If ignoring the link semantics and treating different-typed

links equally, it will be full of noise. Through selecting useful relation sequences, the meta path

avoids the noise caused by complex structure. Moreover, themeta path embody the semantics

of relation sequence. As a consequence, the meta path is a basic analysis tool in heterogeneous

networks.

In addition, let’s analyze the subtle differences of results returned by three path-based mea-

sures. The PathSim finds the similar peer authors, such as Philip Yu and Jiawei Han. They have

the same reputation in data mining field. It is strange for PCRW that the most similar author to

Christos Faloutsos is not himself, but Charu C. Aggarwal andJiawei Han. It is obviously not

reasonable. Our conjecture is that Charu C. Aggarwal and Jiawei Han published many papers in

the conferences that Christos Faloutsos participated in, so Christos Faloutsos has more reachable

probability on Charu C. Aggarwal and Jiawei Han than himselfalong theAPV CV PA path.

HeteSim’s results are a little different. The most similar authors are Srinivasan Parthasarathy

and Xifeng Yan, instead of Philip Yu and Jiawei Han. Let’s revisit the semantics of the path

APV CV PA: authors publishing papers in the same conferences. Fig. 4 shows the reachable

probability distribution from authors to conferences along the pathAPV C. It is clear that the

probability distribution of papers of Srinivasan Parthasarathy and Xifeng Yan on conferences are

more close to that of Christos Faloutsos, so they should be more similar to Christos based on the

same conference publication. Although Philip Yu and JiaweiHan have the same reputation with

C. Faloutsos, their papers are more broadly published in different conferences. So they are not

the most similar authors to C. Faloutsos based on theAPV CV PA path. As a consequence, our

HeteSim more accurately captures the semantics of the path.One more case in the Appendix D

further illustrates the capability of HeteSim to capture the semantics of relevance paths.
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TABLE V

SEMANTIC RECOMMENDATION ON MOVIE DATA .

Search: Iron Man; Path:MAM Search: Iron Man; Path:MTM Search: Sylvester Stallone; Path:AMTM

Rank Movie Score Movie Score Movie Score

1 Iron Man 1.0000 Iron Man 1.0000 Rocky 0.1023

2 The Kite Runner 0.2185 The Incredibale Hulk 0.8752 Million Dollor Baby 0.0981

3 The Good Night 0.1894 TMNT 0.8531 The Wrestlet 0.0932

4 See Spot Run 0.1894 Spawn 0.8256 Hardball 0.0895

5 Proof 0.1894 Batman 0.8171 Out Cold 0.0887

4) Task 4: Semantic Recommendation:In this case study, we illustrate the potential of applying

HeteSim in recommendation systems. An important goal of recommendation systems is to

recommend products according to user’s intent. The ideal recommendation system should be

able to capture the subtlety of intents from different users. Take the movie dataset for example.

Suppose that “M” represents movie, “T” represents the movietypes. “A” and “D” represent

the actors and directors, respectively. If users want to findmovies that share the same actors

with “Iron Man”, the MAM path can be used in the recommendation system. For users who

like the movies which are of the same type with “Iron Man”, thepath MTM can be used.

The recommendation results are illustrated in Table V. It isshown that HeteSim can recommend

different movies based on different paths. TheMAM path recommends movies which share actors

with the movie “Iron Man”, such as “The Kite Runner” and “The Good Night”. Although the

first four recommended movies (except “Iron Man” itself) allhave only one common actor with

“Iron Man”, the Kite Runner has less actors, so its score is higher. TheMTM path recommends

movies of the same type with “Iron Man”, such as “The Incredible Hulk”, “Teenage Mutant

Turtles”, and “Spawn”. “The Incredible Hulk” has more common types with “Iron Man”, so it

ranks the top one. More interestingly, based on relevance paths, theHeteSimcan recommend

objects of different types. For example, a user may like the movies that have the same type with

the movies of the actor “Sylvester Stallone”. TheAMTM path can be adopted. The results are

shown in the last column of Table V. Since “Sylvester Stallone” has acted the leading role in

many movies about boxing and sport, the HeteSim recommends this kind of movies, such as

“Rocky” and “Million Dollar Baby”. Following this idea, we have designed a semantic-based

recommendation system HeteRecom [28].
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TABLE VI

AUC VALUES FOR THE RELEVANCE SEARCH OF CONFERENCES AND AUTHORS BASED ON CPAPATH ON DBLP DATASET.

KDD ICDM SDM SIGMOD VLDB ICDE AAAI IJCAI SIGIR

HeteSim 0.8111 0.6752 0.9504 0.7662 0.8262 0.7322 0.8110 0.8754 0.6132

PCRW 0.8030 0.6731 0.9390 0.7588 0.8200 0.7263 0.8067 0.8712 0.6068

TABLE VII

COMPARISON OF CLUSTERING PERFORMANCES FOR SIMILARITY MEASURES ONDBLP DATASET.

Venue NMI Author NMI Paper NMI Weighted Running Time(s)

Mean Dev. Mean Dev. Mean Dev. Avg. NMI on Author Clustering

HeteSim 0.7683 0.0716 0.7288 0.0835 0.4989 0.0675 0.7235 7.5

PathSim 0.8162 0.1180 0.6725 0.1258 0.3833 0.1086 0.6663 50.7

PCRW 0.7096 0.0726 0.7105 0.0800 0.4881 0.0390 0.7052 2.3

SimRank 0.8889 0.0928 0.6854 0.0662 0.4694 0.0319 0.6812 54

RoleSim 0.2780 0.0343 0.5014 0.0405 0.3885 0.0491 0.4976 55600

P-PageRank 0.731 0.0864 0.4414 0.001 0.4212 0.0637 0.4447 43

C. Performance on Query Task

The query task will validate the effectiveness of HeteSim onquery search of heterogeneous

objects. Since PathSim cannot measure the relatedness of different-typed objects, we only com-

pare HeteSim with PCRW in this experiment. On DBLP dataset, we measure the proximity of

conferences and authors based on theCPApath. For each conference, we rank its related authors

according to their measure scores. Then we draw the ROC curveof top 100 authors according

to the labels of authors (when the labels of author and conference are same, it is true, else

it is false). After that, we calculate the AUC (Area Under ROCCurve) score to evaluate the

performances of the ranked results. Note that all conferences and some authors on the DBLP

dataset are labeled with one of the four research areas (see Section V.A). The larger score means

the better performance. We evaluate the performances on 9 representative conferences and their

AUC scores are shown in Table VI. We can find that HeteSim consistently outperforms PCRW

in all 9 conferences. It shows that the proposed HeteSim method can work better than the

asymmetric similarity measure PCRW on proximity query task.
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D. Performance on Clustering Task

Due to the symmetric property, HeteSim can be applied to clustering tasks directly. In order

to evaluate its performance, we compare HeteSim with five well-established similarity measures,

including two path-based measures (i.e., PathSim and PCRW)and three homogeneous measures

(i.e., SimRank, RoleSim, and P-PageRank). These measures use the same information to deter-

mine the pairwise similarity between objects. We evaluate the clustering performances on DBLP

dataset. There are three tasks: clustering on conferences based onCPAPC path, clustering

on authors based onAPCPA path, and clustering on papers based onPAPCPAP path. For

asymmetric measures (i.e., PCRW and P-PageRank), the symmetric similarity matrix can be

obtained through the average of similarity matrix based on pathsP and P−1. For RoleSim,

it is applied in the network constructed by pathP. For SimRank and P-PageRank, they are

applied in the subnetwork constructed by pathPL (note that three paths in experiments are

symmetric). For example, for theCPAPC path, the bipartite graphMCA derived from path

CPA can used in both SimRank and P-PageRank measures. Then we apply Normalized Cut

[29] to perform clustering based on the similarity matricesreturned by different measures. The

number of clusters is set as 4. The NMI criterion (NormalizedMutual Information) [30] is used

to evaluate the clustering performances on conferences, authors, and papers. NMI is between 0

and 1 and the higher the better. In experiments, the damping factors for P-PageRank, SimRank,

and RoleSim are set as 0.9, 0.8, and 0.1, respectively.

The average clustering accuracy results of 100 runs are summarized in Table VII. We can find

that HeteSim achieves best performances on two tasks (authors and papers clustering) and third

place on the conferences clustering task. In all, it performs best in terms of weighted average of

clustering accuracy in three types. The mediocre results ofPCWR and P-PageRank illustrate that,

although symmetric similarity measures can be constructedby the combination of two random

walk processes, the simple combination cannot generate good similarity measures. RoleSim aims

to detect role similarity, a little different from structure similarity, so it has bad performances in

these clustering tasks. In addition, we also record the running time for similarity computation of

all measures. Due to space limitation, we only show the representative running time on author

clustering task in the last column of Table VII. We can find HeteSim and PCWR have the

smallest running time, since they only need to compute matrix multiplication once along the

October 1, 2013 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL.6, NO. 1, JANUARY 2007 25

1 2 3 4 5
10

−2

10
0

10
2

10
4

l

R
un

ni
ng

 ti
m

e(
lo

g 
sc

al
e,

 s
)

 

 

(APA) l

(APCPA) l

(APSPA) l

(TPT) l

(a) Running time in MUL

1 2 3 4 5
10

−2

10
0

10
2

10
4

R
un

ni
ng

 ti
m

e(
lo

g 
sc

al
e,

 s
)

l

 

 

(APA) l

(APCPA) l

(APSPA) l

(TPT) l

(b) Running time in REL

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

l

R
at

io
 o

f r
un

ni
ng

 ti
m

e(
s)

 

 

(APA) l

(APCPA) l

(APSPA) l

(TPT) l

(c) Time ratio in MUL

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

l

R
at

io
 o

f r
un

ni
ng

 ti
m

e(
s)

 

 

(APA) l

(APCPA) l

(APLPA) l

(TPT) l

(d) Time ratio in REL

Fig. 5. Running time of different parts of HeteSim. MUL and REL represent the two components of HeteSim computation

(i.e., matrix multiplication and relevance computation),respectively.

path. The iterative computation in SimRank and P-PageRank make them longer running time.

The neighbor matching process in RoleSim has high time complexity, which makes it very time-

consuming. The experiments show that HeteSim not only does well on similarity measure of

same-typed objects but also has the potential as the similarity measure in clustering with high

efficiency.

VI. QUICK COMPUTATION STRATEGIES AND EXPERIMENTS

HeteSim has a high computation demand for time and space. It is not affordable for on-

line query in large-scale information networks. So a primary strategy is to compute relevance

matrix off-line and do on-line queries with these matrix. For frequently-used relevance paths,

the relatedness matrixHeteSim(A,B|P) can be materialized ahead of time. The on-line query

on HeteSim(a, B|P) will be very fast, since it only needs to locate the row and column in

the matrix. However, it also costs much time and space to materialize all frequently-used paths.

As a consequence, we propose four strategies to fast computethe relevance matrix. Moreover,

experiments validate the effectiveness of these strategies.

A. Computation Characteristics of HeteSim

The computation of HeteSim includes two phases: matrix multiplication (denoted as MUL,

i.e., the computation ofPMPL
and PMPR

−1), relevance computation (denoted as REL, i.e.,

the computation ofPMPL
∗ PMPR

−1 and normalization). In order to analyze the computation

characteristics of HeteSim, we do experiments to observe the running time of these two phases

on different paths with varying path lengths.
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Based on the ACM dataset (see Section V.A), we select four paths with varying length (l):

(APA)l, (APCPA)l, (APSPA)l, and(TPT )l. l means times of path repetition and ranges from

1 to 5. We record the running time of different phases of HeteSim based on these paths as shown

in Fig. 5. We first observe MUL’s running time in Fig. 5(a). Different paths have different running

time. With the increment of path length, the running time of matrix multiplication persistently

increase, since more matrix need to be multiplied. Then we consider the running time of REL

phase in Fig. 5(b). Besides the same observation with Fig. 5(a), the running time of REL is

greatly affected by the lengthl. That is, the running time of REL significantly increases for

(APCPA)l and (APSPA)l when l is 2 and 4. Let’s take the(APCPA)l as an example to

analyze the reason. Whenl is 1, 3, and 5, the source and target nodes will meet at the middle

nodeC along the(APCPA)l path, so the relevance calculation isPMAC × PMCA. However,

the relevance calculation isPMAA × PMAA when l being 2 and 4. Since the dimension ofA

is much larger than that ofC, the running time ofPMAA ×PMAA is much longer than that of

PMAC × PMAC . The similar reason makes(TPT )l have the opposite fluctuation. In addition,

the time spent in REL does not grow any longer when the matrix become a dense one. So its

increase ratio gradually decreases. For the(APA)l path, the dimension ofA andP are close (#

A 17K and # P 12K), so its running time has no distinct difference for different path lengths. In

addition, the reachable probability matrix always keeps sparse, which makes the running time

of (APA)l smaller than that of other paths.

Fig. 5(c) and (d) show the ratio of running time in these two phases over total running

time. On one hand, it illustrates that the REL phase dominates the running time of HeteSim.

On the other hand, the ratio of MUL consistently increases with the increment of path length.

From these experiments, we can summarize two characteristics of HeteSim computation. (1)

The relevance computation is the main time-consuming phase. It implies that the speedup of

matrix multiplication may not significantly reduce HeteSim’s running time, although this kind

of strategies is widely used in accelerating SimRank [4] andPCWR [24]. (2) The dimension

and sparsity of matrix greatly affect the efficiency of HeteSim.

B. Quick Computation Strategies

Although we cannot reduce the running time of relevance computation phase directly, we can

accelerate the computation of HeteSim through adjusting matrix dimension and keeping matrix
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sparse. Based on above idea, we design the following four strategies.

1) Dynamic Programming Strategy:The matrix multiplication obeys the associative prop-

erty. Moreover, different computation sequences have different time complexities. The Dynamic

Programming strategy (DP) changes the sequence of matrix multiplication with the associative

property. The basic idea of DP is to assign low-dimensioned matrix with the high computation

priority. For a pathP = R1 ◦ R2 ◦ · · · ◦ Rl, the expected minimal computation complexity of

HeteSim can be calculated by the following equation and the computation sequence is recorded

by i.

Com(R1 · · ·Rl) =



















0 l = 1

|R1.S| × |R1.T | × |R2.T | l = 2

argmin
i
{Com(R1 · · ·Ri) + Com(Ri+1 · · ·Rl) + |R1.S| × |Ri.T | × |Rl.T |} l > 2

(7)

The above equation can be easily solved by dynamic programming method with theO(l2)

complexity. The running time can be omitted, sincel is much smaller than the matrix dimension.

There may be many duplicate sub-paths in the relevance path.Obviously, these reduplicative

sub-paths only need to be computed once. For example, the result of APTPAcan be obtained by

computing the matrixAPT once. During the matrix multiplication, the DP strategy reserves the

computation sequences of matrices and corresponding results. For a new computation sequence,

if it has been computed before, the corresponding result canbe employed directly. So the reuse

strategy further accelerates the matrix multiplication. Note that the DP strategy only accelerates

the MUL phase (i.e., matrix multiplication) and it does not change relevance result, so the DP

is a information-lossless strategy.

2) Truncation Strategy:The truncation strategy is based on the hypothesis that removing

the probability on those less important nodes would not significantly degrade the performance,

which have been proved by many researches [24], [31]. One advantage of this strategy is to keep

matrix sparse. The sparse matrix greatly reduces the amountof space and time consumption.

The basic idea of truncation strategy is to add a truncation step at each step of random walk.

In the truncation step, the relevance value is set with 0 for those nodes when their relevance

values are smaller than a thresholdε. A static threshold is usually used in many methods (e.g.,

ref. [24]). However, it has the following disadvantage: it may truncate nothing for matrix whose

elements all have high probability and it may truncate most nodes for matrix whose elements
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all have low probability. Since we usually pay close attention to the topk objects in query task,

the thresholdε can be set as the topk relevance value for each search object. For a similarity

matrix with sizeM × L, the k can be dynamicly adjusted as follows.

k =

{

L if L ≤W

⌊(L−W )
β⌋+W (β ∈ [0, 1]) others

whereW is the number of top objects, decided by users. The basic ideaof dynamic adjustment

is that thek slowly increases for super object type (i.e.,L is large). TheW andβ determine the

truncation level. The largerW or β will cause the largerk, which means a denser matrix. It is

expensive to determine the topk relevance value for each object, so we can estimate the valueby

the topkM value for the whole matrix. Furtherly, the topkM value can be approximated by the

sample data with ratioγ from the raw matrix. The largerγ leads to more accurate approximation

with longer running time. In summary, the truncation strategy is an information-loss strategy,

which keeps matrix sparse with small sacrifice on accuracy. In addition, it needs additional time

to estimate the thresholdε.

3) Hybrid Strategy:As discussed above, the DP strategy can accelerate the MUL phase and

the truncation strategy can indirectly speed up the REL phase by keeping sparse matrix. So a

hybrid strategy can be designed to combine these two strategies. For the MUL phase, the DP

strategy is applied. After obtaining thePMPL
andPMPR

−1, the truncation strategy is added.

Different from the above truncation strategy, the hybrid strategy only truncates thePMPL
and

PMPR
−1 . The hybrid strategy utilizes the benefits of DP and truncation strategies. It is also an

information-loss strategy, since the truncation strategyis employed.

4) Monte Carlo Strategy:Monte Carlo method (MC) is a class of computational algorithms

that estimate results through repeating random sampling. It has been applied to compute approx-

imate values of matrix multiplication. Fogaras et al. [13] applied a Monte Carlo algorithm to

compute approximate personalized PageRank. Recently, Ni et al. [24] tested the effectiveness of

the Monte Carlo sampling strategy in the context of path-constrained random walk models.

In this study, we applied the MC strategy to estimate the value of PMPL
andPMPR

−1 . The

value ofPMP(a, b) can be approximated by the normalized count of the number of times that

the walkers visit the nodeb from a along the pathP.

PMP(a, b) =
#times the walkers visit b along P

#walkers from a
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Fig. 6. Running time and accuracy of computing HeteSim basedon different strategies and paths.
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Fig. 7. Different phase’s running time of computing HeteSimbased on(APCPA)l path.

The number of walkers froma (i.e., K) controls the accuracy and amount of computation.

The largerK will achieve more accurate estimation with more time cost. An advantage of the

MC strategy is that its running time is not affected by the dimension and sparsity of matrix.

However, the high-dimension matrix needs largerK for high accuracy. As a sampling method,

the MC is also an information-loss strategy.

C. Quick Computation Experiments

We validate the efficiency and effectiveness of quick computation strategies on the ACM

dataset. The four paths are used:(APA)l, (APCPA)l, (APSPA)l, and(TPT )l. l means times
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of path repetition and ranges from 1 to 5. Four quick computation strategies and the original

method (i.e., baseline) are employed. The parameters in truncation process are set as follows:

the number of top objectsW is 200, β is 0.5, andγ is 0.005. The number of walkers (i.e.,

K) in MC strategy is 500. The running time and accuracy of all strategies are recorded. In the

accuracy evaluation, the relevance matrix obtained by the original method are regarded as the

baseline. The accuracy is therecall criterion on the top 100 objects obtained by each strategy.

All experiments are conducted on machines with Intel Xeon 8-Core CPUs of 2.13 GHz and 64

GB RAM.

Fig. 6 shows the running time and accuracy of four strategieson different paths. The running

time of these strategies are illustrated in Fig. 6 (a)-(d). We can observe that the DP strategy

almost has the same running time with the baseline. It only speeds up the HeteSim computation

when the MUL phase dominates the whole running time (e.g.,(APCPA)5 and(APSPA)5). It

is not the case for the truncation and hybrid strategies, which significantly accelerate the HeteSim

computation and have a close speedup ratio on most conditions. Except theAPA path, the MC

strategy has the highest speedup ratio among all four strategies on most conditions. Then, let’s

observe their accuracy from Fig. 6 (e)-(h). The accuracy of the DP strategy is always close to

1. The hybrid strategy achieves the second performances formost paths. The accuracy of the

MC strategy is also high for most paths, while it fluctuates ondifferent paths. Obviously, the

truncation strategy has the lowest accuracy on most conditions.

As we have noted, the DP is an information-lossless strategyand it only speeds up the MUL

phase. Moreover, the MUL phase is not the main time-consuming part for most paths. So the DP

strategy trivially accelerates HeteSim with the accuracy close to 1. The truncation strategy is an

information-loss strategy to keep matrix sparse, so it can effectively accelerate HeteSim. That is

the reason why the truncation strategy has the high speedup ratio but low accuracy. The hybrid

strategy combines the DP and truncation strategy. So it has aclose speedup ratio to the truncation

strategy. The hybrid strategy only does truncation on the last step of random walk, which makes

it less information-loss. It explains that its accuracy is higher than the truncation strategy. As

we know, the essence of the MC strategy is repeatedly random sampling. In order to achieve

high accuracy, more walkers (i.e., largerK) are needed for high-dimension or sparse matrix. In

our experiments, the fixed walkers (i.e.,K is 500) makes the MC strategy the poor accuracy

on some conditions. For example, in Fig. 6 (h), the relevancecalculation isPMTP × PMTP
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for (TPT )5. The high dimension ofP and even distribution result in the low accuracy of MC

strategy.

In order to clearly illustrate the effect of these strategies on two phases of HeteSim computa-

tion, a typical running-time example on(APCPA)l is shown in Fig. 7. It is clear that the DP

strategy greatly accelerates the MUL phase indeed, but it has no effect on the REL phase. On

the contrary, the truncation strategy is slower than the baseline on the MUL phase, due to sparse

matrix and additional time spent in estimating the threshold. However, the truncation strategy

greatly accelerates the REL phase because the sparse matrixis kept. Compared to the truncation

strategy, the MC strategy not only accelerates the REL phasebut also benefits the MUL phase

on dense matrix.

According to the analysis above, these strategies are suitable for different paths and scenarios.

For very sparse matrix (e.g.,(APA)l) and low-dimension matrix (e.g.,(APCPA)3), all strategies

cannot significantly improve efficiency. However, in these conditions, the HeteSim can be quickly

computed without applying any quick computation strategies. For those dense (e.g.,(APCPA)4)

and high-dimension matrix (e.g.,(APSPA)4) which has huge computation overhead, the trun-

cation, hybrid, and MC strategies can effectively improve the HeteSim’s efficiency. Particularly,

the speedup of the hybrid and MC strategies are up to 100 with little loss in accuracy. If the MUL

phase is the main time-consuming part for a path, the DP strategy can also speed up HeteSim

greatly without loss in accuracy. The MC strategy has very high efficiency, but its accuracy may

degrade for high-dimension matrix. So the appropriateK needs to be set through balancing the

efficiency and effectiveness.

VII. CONCLUSION

In this paper, we study the relevance search problem which measures the relatedness of hetero-

geneous objects (including same-typed or different-typedobjects) in heterogeneous networks. We

propose a general relevance measure, called HeteSim. As a path-constraint measure, HeteSim can

measure the relatedness of same-typed and different-typedobjects in a uniform framework. In

addition, HeteSim is a semi-metric measure, which can be used in many applications. Extensive

experiments validate the effectiveness and efficiency of HeteSim on evaluating the relatedness

of heterogeneous objects.

There are some interesting directions for future work. Firstly, more methods can be explored
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to measure the relatedness of heterogeneous objects, such as path count and RW strategies.

Secondly, since the quick computation strategies proposedin this paper are all in-memory

methods, the parallel computation methods of HeteSim can bean interesting topic to explore.

Last but not least, the problem on how to choose and weight different meta paths are also

important issues for heterogeneous networks.
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APPENDIX A

PROOF OFPROPERTIES

Proof of Property 1. According to Definition 6, for each relation instancea → b in relation

R = AB (a ∈ A andb ∈ B), add an objecte (e ∈ E) betweena andb, and letwae = web =
√
wab

wherew means the weight of relation instances. Note that for adjacent matrix, wae = web =
√
wab=1. Sincea and b only meet one, soRO(a, :) ∗RI(:, b) = wae ∗ web = wab = R(a, b). So

R = RO ◦RI . Since the process is unique, the decomposition is unique.

Proof of Property 2. According to Definition 8,UAB is the normalized matrix of the transition

probability matrixWAB along the row vector, which is also the transposition of the normalized

matrix of WBA along the column vector (i.e.,VBA). SoUAB = V ′
BA. Similarly, VAB = U ′

BA.

Proof of Property 3. According to Definition 5,P = PLPR andP−1 = PR
−1PL

−1. According

to Equation 6,

HeteSim(a, b|P) =
PMPL

(a, :)PM ′
PR

−1(b, :)
√

‖PMPL
(a, :)‖‖PMPR

−1(b, :)‖

HeteSim(b, a|P−1) =
PMPR

−1(b, :)PM ′
PL

(a, :)
√

‖PMPR
−1(b, :)‖‖PMPL

(a, :)‖

(8)

soHeteSim(a, b|P) = HeteSim(b, a|P−1).

Proof of Property 4. According to Equation 6,HeteSim(a, b|P) = cos(PMPL
(a, :), PMPR

−1(b, :

)) ∈ [0, 1]. If and only if PMPL
(a, :) is equal toPMPR

−1(b, :), cos(PMPL
(a, :), PMPR

−1(b, :

)) = 1, soHeteSim(a, b|P) = 1.

Proof of Property 5. It is obvious thatSimRank0(a1, a2) = HeteSim(a1, a2|I) and

SimRank0(b1, b2) = HeteSim(b1, b2|I). Here SimRanki means SimRank value afteri hop.
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Let’s consider the 1st hop condition.

SimRank1(a1, a2)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRank0(Oi(a1), Oj(a2))

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRank0(bi, bj)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

HeteSim(bi, bj|I)

= HeteSim(a1, a2|RR−1)

(9)

sinceO(a2) = I(a2|BA), O(a1) = O(a1|AB) and SimRank0(b1, b2) = HeteSim(b1, b2|I).
Similarly, SimRank1(b1, b2) = HeteSim(b1, b2|R−1R). Suppose it is correct fork-th hop, let’s

consider thek + 1 hop.

SimRankk+1(a1, a2)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRankk(Oi(a1), Oj(a2))

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

SimRankk(bi, bj)

=
1

|O(a1)||O(a2)|

|O(a1)|
∑

i=1

|O(a2)|
∑

j=1

HeteSim(bi, bj |(R−1R)k)

= HeteSim(a1, a2|R(R−1R)kR−1)

= HeteSim(a1, a2|(RR−1)k+1)

(10)

Similarly, SimRankk+1(b1, b2) = HeteSim(b1, b2|(R−1R)k+1) So

SimRank(a1, a2) = lim
n ∞

n
∑

k=1

SimRankk(a1, a2)

= lim
n ∞

n
∑

k=1

HeteSim(a1, a2|(RR−1)k)

(11)

Similarly,

SimRank(b1, b2) = lim
n ∞

n
∑

k=1

HeteSim(b1, b2|(R−1R)k) (12)
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TABLE VIII

AUTOMATIC OBJECT PROFILING TASK ON CONFERENCE“KDD” ON ACM DATASET.

Path CVPA CVPAF CVPS CVPAPVC

Rank Authors Score Organization Score Subjects Score Conf. Score

1 Christos Faloutsos 0.1198 Carnegie Mellon Univ. 0.0824 H.2 (database management) 0.3215 KDD 1

2 Heikki Mannila 0.1119 Univ. of Minnesota 0.0814 I.5 (pattern recognition) 0.1650 VLDB 0.2124

3 Padhraic Smyth 0.1043 IBM 0.0761 I.2 (artificial intelligence) 0.1194 SIGMOD 0.1535

4 Jiawei Han 0.1029 Yahoo! Research 0.0692 G.3 (prob. and stat.) 0.0856 WWW 0.1391

5 Vipin Kumar 0.0966 Univ. of California 0.0683 H.3 (info. storage and retrieval) 0.0653 CIKM 0.0943

APPENDIX B

AUTOMATIC OBJECT PROFILING

In this case study, we want to find the profile of KDD conference. Table VIII shows the

results on ACM dataset. The active researchers in the conference can be found by theCV PA

path indicating the relationship of authors publishing papers in conferences. The top five authors

are all well-known researchers in data mining area. TheCV PAF path reveals the important

research affiliations that have published many papers in KDD, such as CMU, IBM, Yahoo!

Research. The results ofCV PS illustrate that the topics of KDD are database management

(H.2), pattern recognition (I.5), and so on. TheCV PAPV C path measures the similarity of

conferences through their common authors. The conferencesthat are most similar to KDD are

VLDB, SIGMOD, WWW and CIKM. It is reasonable, since these conferences all share many

authors whose research areas are data mining and knowledge management.

APPENDIX C

EVALUATION OF RELATIVE IMPORTANCE

The relative importance is hard to quantitatively measure.However, we can roughly measure

the relatedness of authors and conferences by the number of papers that authors publish in

conferences, and then rank the relatedness as their relative importance (i.e., ground truth). We

also compute the relatedness of authors and conferences based on HeteSim and PCRW, and then

rank these values. Through computing the average rank difference from the ground truth, we

can roughly measure the accuracy of relative importance. For example, C. Faloutsos is ranked

1st on KDD as ground truth, while an approach rank him 6th. So the rank difference is 5. Note
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Fig. 8. The average rank difference of HeteSim and PCRW on 14 conferences of ACM dataset. The lower the better.

TABLE IX

THE TOP10 MOST RELATED AUTHORS TO“KDD” CONFERENCE UNDER DIFFERENT RELEVANCE PATHS ONACM DATASET.

path

rank CVPA CVPAPA

1 Christos Faloutsos Charu C. Aggarwal

2 Heikki Mannila Philip Yu

3 Padhraic Smyth Heikki Mannila

4 Jiawei Han Christos Faloutsos

5 Vipin Kumar Jiawei Han

6 Philip Yu Bianca Zadrozny

7 Eamonn Keogh Padhraic Smyth

8 Kenji Yamanishi Kenji Yamanishi

9 Mohammed J. Zaki Inderjit S. Dhillon

10 Charu C. Aggarwal Vipin Kumar

that, since PCRW has two rank scores for two different orders, the results are the average rank

differences based on these two different orders. Fig. 8 showthe average rank difference on the

top 200 authors in ground truth on each conference. It is clear that HeteSim more accurately

reveals the relative importance of author-conference pairs, since their average rank difference is

smaller.
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APPENDIX D

SEMANTIC MEANING OF RELEVANCE PATH

We know that different paths have different semantic meanings in heterogeneous networks.

Table IX shows such a case, which searches the most related authors to KDD conference based

on two different relevance paths. TheCVPA path means conferences publishing papers written

by authors. It identifies the most active authors to the conference. TheCVPAPApath means

conferences publishing papers written by authors’ co-authors. It identities the persons with the

most active group of co-authors. In social network setting,this is like identifying the persons

with the most active group of friends or potential targets for viral marketing. At first glance,

there are no obvious difference between the results returned by these two paths. However, the

different ranks of these authors reveal the subtle semantics on the paths. TheCVPApath returns

authors that have high publication records in KDD. For example, Christos Faloutsos published

the most papers (32) in KDD. Note that HeteSim does not simplycount the number of paths

connecting two objects. It also considers the mutual influence of two objects. For example, Jiawei

Han and Philip Yu published the second and third highest number of papers in KDD. However,

they have wider research interests and published many papers in many other conferences, so

their relatedness to KDD decrease based on theCVPApath.

By contrast, theCVPAPApath emphasizes on the publication records of the co-authors. The

results also reflect this point. For example, although CharuC. Aggarwal published 13 papers in

KDD, not the highest publication records, he has many co-authors which include many high-

publication-record authors (e.g., Philip Yu and Jiawei Han), so he is the first author related to

KDD based onCVPAPApath. The same thing also happens to other authors. Taking Bianca

Zadrozny for example, she only published 6 papers in KDD. However, her co-authors also

include many high-publicaton-record authors, such as Philip Yu, Naoki Abe, and Wei Fan. In

all, HeteSim can accurately capture the semantics under relevance paths.
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